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This paper discusses a nonlinear finite element formulation 
comprising contact and engineering elements in modeling post-
tensioned concrete members. The study focuses on modeling of 
the sliding behavior observed in post-tensioned tendons. Detailed 
discussion is presented for the modified node-to-segment contact 
formulation, by which the bonding interface is discretized and 
physically modeled. Perfectly unbonded, partially bonded, and 
fully bonded conditions are considered by introducing frictionless 
and frictional contact. Post-tensioned tendons are modeled by 
the nonlinear truss element and are embedded into the nonlinear 
reinforced concrete beam element. The embedding element 
comprises elastic Euler beam element with very large stiffness. 
The nonlinear anchorage element and the prestressing procedure 
are also proposed to simplify and to properly model the complex 
jacking process. The proposed formulations were implemented in 
a nonlinear finite element code developed in MATLAB. Validation 
of the proposed formulations and implementations were carried 
out in several numerical studies. The proposed formulation 
performed with a reasonably good accuracy in reproducing global 
flexural behavior as well as predicting localized prestress loss and 
redistribution.

Keywords: contact formulation; friction; nonlinear finite element; post-
tensioned concrete; sliding.

INTRODUCTION
Over the last few decades, the research community 

has been actively exploring the finite element method 
in modeling concrete and composite structures (Kang 
et  al. 2009; Fagan et al. 2017). Post-tensioned (PT) struc-
tures, among many other types of structural systems, have 
frequently received attention from researchers in the past, 
yet present great difficulties for applying conventional finite 
element formulation to the modeling. The fundamental of 
successfully modeling different types of prestressed concrete 
systems (that is, pre-tensioned, bonded, and unbonded PT 
system) lies in the interface modeling between prestressing 
tendons and surrounding concrete or corresponding sheath-
ings. In the case of pre-tensioned and bonded PT systems, 
strain compatibility is commonly assumed in the literature 
(that is, perfect bonding condition). However, it is a great 
challenge to model the unbonded PT system due to the strain 
incompatibility caused by potential tendon sliding through 
sheathings during the prestressing and service loading. The 
complication of boundary nonlinearity is therefore presented 
to the finite element researchers. The modeling approaches 
toward the bonding interface likely fall into three catego-
ries in literature. Studies that fall into the first category typi-
cally employ empirical equations and special procedures 
to determine strains of unbonded tendons (Kang and Scor-

delis 1980; Van Greunen and Scordelis 1983; Nikolic and 
Mihanovic 1997). Even though it provides some practical 
values in design, the lack of modeling flexibility limits its 
application. In the second category, link or spring elements 
are normally introduced to connect unbonded tendons 
and surrounding sheathings or concrete (El-Mezaini and 
Çıtıpıtıolu 1991; El-Mezaini et al. 1991; Vecchio et al. 2006; 
Huang et al. 2010). The link element is free of rotation in 
the plan of tendon profile, where small sliding is emulated. 
This approach, while permitting a unified treatment to the 
problem in the context of finite element analysis, attains 
only small rotation and sliding, as large rotations of link 
elements may lead to inaccurate balancing force due to 
prestress (Huang et al. 2010). The approaches in the third 
category are often a combination of using link elements 
and empirical relations to determine loss of prestress with 
partially bonded condition (Wu et al. 2001). An intuitive 
and promising avenue of modeling finite sliding, to the 
authors’ knowledge, is to formulate the bonding interface 
as a contact problem. However, there are very few studies 
addressing contact modeling toward unbonded PT structures 
(Ellobody and Bailey 2008; Huang et al. 2010). The litera-
ture is particularly lackluster in exploring the combination of 
contact formulation and engineering elements applied to PT 
members. Research aiming to improve solution reliability 
and robustness in PT system design still leaves a lot to be 
desired. As a corollary, this study concentrates heavily on 
the development of an effective and practical nonlinear finite 
element formulation, where a reasonably accurate represen-
tation of PT tendon stress can also be obtained at any given 
bonding condition (that is, bonded, partially bonded, and 
unbonded PT tendons). The formulation is straightforward 
and built upon physical insights. It can be implemented with 
some fast, numerical routines to help design PT members in 
practice. Material and boundary nonlinearity is considered 
in the proposed two-dimensional (2-D) formulation. The 
framework, however, is sufficiently generic to be extended 
to three-dimensional (3-D) cases taking geometric nonlin-
earity into consideration.

Five types of elements are employed to assemble a 
complete PT member. The prestressing tendon and concrete 
hosting member of beam or slab are, respectively, discret-
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ized via the two-node truss and two-node Euler-Ber-
noulli beam element considering material nonlinearity. 
The prestressing tendon sheathings are embedded into the 
elements of concrete beam through a series of embedding 
elements. The node-to-segment (NTS) contact formula-
tion developed by Wriggers (2008) is the basis of interface 
modeling. To successfully adapt the NTS formulation to 
model sliding, some necessary modifications are discussed 
and introduced. An anchorage element is also developed 
to simplify the complex procedures of post-tensioning and 
to model the anchorage zone of prestressing tendons. The 
modified Newton-Raphson method with line search was 
employed to obtain numerical solutions. Finally, a series of 
numerical studies including analyses of two continuous PT 
beams, six simply supported PT beams, and two one-way 
PT slabs are presented to validate the proposed formulation.

RESEARCH SIGNIFICANCE
Many contact formulations and algorithms have been 

implemented and developed in commercial/non-commercial  
FEA codes. However, studies specifically centered on apply
ing contact formulation to the modeling of PT members are 
lacking in the sense of developing accurate design solution 
with dispatch. To bridge this gap, a physical approach to 
model bonded, partially bonded, and unbonded PT members 
is developed with an emphasis on combining engineering 
element with contact formulation. In this study, the proposed 
modeling approach is provided in detail, along with the 
validation of several numerical studies. The framework is 
generic enough to be extended to other types of unbonded 
PT members.

TWO-DIMENSIONAL NONLINEAR FINITE 
ELEMENT FORMULATION OF PT BEAM

Discretization schemes
This section briefly discusses the discretization schemes 

employed to assemble a PT beam member. A typical PT 
beam is discretized into a series of engineering elements 
as shown in Fig. 1. The black thicker line represents the 
reference location of the element that discretizes the beam 
without prestressing tendons. The prestressing tendons are 
modeled via a series of first-order truss elements rendered 
as a red parabolic line in Fig. 1. The dotted lines repre-

sent the embedding elements that are, in fact, rigid beams 
or alternatively very stiff beams. The embedding elements 
ensure that the prestress-induced load and moment are 
appropriately transferred to the reference location of the 
PT beam. The anchorage element located at either end of 
the PT beam comprises two nodes. The first node is from 
the tendon element and the other node is from the adjacent 
embedding element (blue solid lines at the end of the beam 
in Fig. 1). A typical contact element consists of five nodes 
with 12 degrees of freedom. Among all five nodes, two are 
from a pair of adjacent embedding elements (or in the case 
of anchorage zone, one node from anchorage element and 
the other node from embedding element) and the remaining 
nodes belong to two nearby linear tendon elements with the 
middle shared node confined between the adjacent embed-
ding elements; therefore, the middle shared node of tendon 
elements is constrained along the linear segment (sheathing) 
depicted by a straight line (dotted circle in Fig. 1). The 
proposed formulation also allows multiple nodes of tendon 
to be in contact with one line segment via constantly acti-
vating new and removing old contact elements through a 
contact search algorithm before every iteration. This treat-
ment ensures that finely meshed tendon elements will still 
work well with coarsely meshed beam elements and vice 
versa. Based on the discretization schemes, a NTS contact 
formulation (Wriggers 2008) was employed. The NTS 
formulation is modified in this study to correct the artificial 
prestress deviation. The element development is presented 
in the next section.

Contact element
Kinematics of contact element—Figure 2 shows a contact 

element in detail where Xs, X1, X2, X3, and X4 denote the posi-
tion vectors of the middle slave contact node (from tendon 
elements), the two master nodes of the contact segment 
(from embedding elements), and the two side tendon nodes 
adjacent to the middle slave contact node (from tendon 
elements) (also see the list of notations in Appendix A*. The 
tendon node (middle slave node) is constrained along the 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.	

Fig. 1—Finite element discretization scheme for typical PT member.
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straight line formed by the two master nodes (contact master 
segment). The distance between the slave node and master 
segment in the contact element e is derived as

	  g X X X nn
e

s= − − −  ⋅( )1 1 2ξ ξ 	 (1)

where n is the unit normal vector with respect to the master 
segment, and ξ is the projection of the slave node onto the 
master segment in the master segment local coordinate as

	  ξ =
− ⋅( )X X t
l

s

ct
e

1 	 (2)

where t and lct
e, respectively, denote the unit tangential 

vector along the master segment and the length of the master 
segment. The function of slip motion (gt

e) associated with 
contact element e is derived as

	  g lt
e

ct
e= −( )ξ ξ0 	 (3)

where ξ0 denotes the local surface coordinate of the slave 
node projected onto the master surface at the initial configu-
ration. The variation of gn

e and gt
e are computed as

	  δ δ ξ δ ξδg d d d nn
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where δds
e, δd1

e, and δd2
e are, respectively, the virtual 

displacements of the slave node and the master nodes of the 
contact element e. Equations (4) and (5) represent the kine-
matic relations of the contact element proposed by Wriggers 
(2008). The finite element discretized form of the virtual 
work for a contact element is given as

	 δ∏ = δgn
ePn

e + δgt
eTt

e	 (6)

where Pn
e and Tt

e are the normal and tangential contact forces 
that are determined by the constitutive equation selected at 

the contact interface; and e represents the element label. In 
the next section, it is shown that the default NTS discret-
ization scheme, unfortunately, introduces either artificial 
prestress loss or prestress gain due to that normal contact 
force is less likely aligned with the normal direction of 
prestressed tendon in the proposed discretized configuration. 
This is inevitable, as both prestressed tendons and sheath-
ings are discretized into series of linear segments. Even 
though the nodes of tendon are constrained along the path 
of sheathing elements, the tendon element and the adjacent 
sheathing path most likely do not overlap, as illustrated in 
Fig. 3. Therefore, it is crucial to introduce a small correction 
force to align the normal contact force (Pn

e) with the normal 
direction of the tendon at every contact slave node. Note that 
the normal direction of tendon at each node is defined as the 
direction such that any force exerted along the direction on 
that node can be decomposed into two equal load vectors 
following the directions of the two adjacent tendon segments 
(that is, the “middle” vector between the two adjacent tendon 
line segments).

Modified contact element internal force—The penalty 
method is employed to enforce the contact constraint. The 
internal force vector needs to be derived to enforce force 
equilibrium and to evaluate the tangential stiffness matrix of 
the contact element. The element displacement vector (dct

e) 
of the contact element e is defined as

	d d d d d d d d d d d d dct
e

sx
e

sy
e

x
e

y
e e

x
e

y
e e

x
e

y
e

x
e

y
e= ( )1 1 1 2 2 2 3 3 4 4θ θ

T		

		  (7)

The first two master nodes (nodes from adjacent embed-
ding elements) of the contact element inherit three degrees 
of freedom from the nodes of embedding elements. The 
remaining nodes have two degrees of freedom from the 
2-D truss elements. The embedding element is modeled 
by a very stiff Euler-Bernoulli beam element that shares 
the nodes of the reinforced concrete beam element and the 
tendon sheathing element, as shown in Fig. 2. Therefore, the 
displacement vector comprises 12 degrees of freedom. The 
Ne, N0

e, T e, and T0
e matrixes are, respectively, defined as

	N n n ne = − − − 0 1 0 0 0 0 0 0 0 0( )ξ ξ
T

		

		  (8)

Fig. 2—Formulation of contact element.

Fig. 3—Illustration of tangential correction force to elimi-
nate artificial prestress loss or gain along tendon path.
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	 N n ne
0 0 0 0 0 0 0 0 0 0 0= −[ ]T	 (9)

	T t t te = − − − 0 1 0 0 0 0 0 0 0 0( )ξ ξ
T

		

		  (10)

	 T t te
0 0 0 0 0 0 0 0 0 0 0= −[ ]T	 (11)

Equations (4) and (5) are recast as

	 δgn
e = δdct

eTNe	 (12)

	 δ δ δg d T
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The discretized virtual work form of contact contribution 
without correction force is written as

	 δ δ δg P g T d N P T Tn
e
n
e

t
e
t
e

ct
e e

n
e e

t
e+ = +T ( ) 	 (14)

	 T T
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N

g
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T
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e
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e
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e

e
 = + +0 0 	 (15)

As illustrated in Fig. 3, a small force along the contact 
master segment needs to be introduced to correct the normal 
contract force vector. The corrected unit normal vector n′ is 
computed as

	 ′ =
− + −
− + −
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The tangent between n and n′ is obtained as

	 tan( )α =
′ ×
′ ⋅

′ ⋅
′ ⋅

n n
n n

n t
n t

	 (18)

where α is the angle measured between n and n′ clockwise. 
In the case of n and n′ are orthogonal, tan(α) is replaced with 
a sufficient large value in the iteration. Note that using a finer 
mesh in the region of large tendon curvature eliminates this 
numerical difficulty. In the case of t and n′ are orthogonal, 
tan(α) is set to zero.

From Fig. 3, the magnitude of correction force is obtained 
by the product of the uncorrected normal contact force and 
absolute value of the tangent. The result obtained from the 
aforementioned kinematic relation of tangential motion can 
be then used to construct the correction term in the discret-
ized virtual work form. The discretized form of virtual work 
with the correction term is expressed as

δ δ δ δg P g P g T d N P T P T Tn
e
n
e

t
e
n cor
e

t
e
t
e

ct
e e

n
e e

n cor
e e

t
e+ + = + +_ _(T

  ))	 (19)

	 P P tn cor
e

n
e

_ tan( )= ′α 	 (20)

where t′ is the unit direction vector for correction force.
Equation (19) yields the contact element force vector (Ge) as

	 G N P T P T Tct
e e

n
e e

n cor
e e

t
e= + + 

_ 	 (21)

Constitutive relations at contact interface—A PT beam 
with perfectly bonded tendons is the simplest case to begin 
the discussion. All the tendon nodes are constrained at their 
initial position in the local coordinates of the sheathing 
elements. Therefore, two equality constraints (gn

e = 0 and 
gt

e = 0) are enforced in the finite element discretization. The 
penalty method was employed in this study to impose these 
constraints. Two large penalty stiffness εn and εt are selected 
to compute the normal and tangential contact forces, respec-
tively. The penalty factors are set to values with orders of 
magnitude larger than the typical stiffness in the system such 
that the erroneous normal penetration and tangential slip are 
miniscule compared to overall structural deformation. For a 
perfectly bonded tendon system, stick behavior (as opposed 
to slip behavior) is observed in the tangential direction. Thus, 
the contact forces are determined by the penalty method in 
both normal and tangential directions. For the stick behavior, 
the normal and tangential contact forces are given by

	 Pn
e = εngn

eae	 (22)

	 Tt
e = εtgt

eae

where ae is the contact surface within the element that is equal 
to the length of the master contact segment. For multiple slave 
nodes in contact with one master segment, ae is taken propor-
tionally for each contact element e from the total length of 
master segment based on a tributary area approach.

For perfectly and partially unbonded systems, sliding 
occurs at the contact interface. The tangential contact force 
is governed by the integration of the friction law. The 
Coulomb model of friction was employed, which assumes 
that the maximum tangential contact pressure is proportional 
to the normal contact pressure. The stick and slip behavior 
described by the Coulomb model is stiff and leads to math-
ematical difficulty. Wriggers (2008) proposed a treatment 
by splitting the tangential motion into elastic (stick) and 
plastic (slip) portions. Once the slip condition is fulfilled, an 
updating algorithm is used to update the total slip distance 
and tangential contact stress at each time increment as

	 i
t
e i

t
e

i
t tr
e

n
e i

t tr
e

T

g g
T P t

+

+ +

= +
−( )

1

1 1

_ _µ

ε
	 (23)

	 i
t
e

n
e i

t tr
eT P t+ +=1 1µ _
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where i t
eg+1  is the updated total slip distance of the slave node 

in contact element e at time i + 1; i t
eT+1  is the updated tangen-

tial contact stress at time i + 1; i t tr
eT+1

_  is the trial tangential 
contact stress obtained by assuming a stick behavior at time 
i + 1; μ is the frictional coefficient defined at the contact 
interface; and i t tr

et+1

_  is the slip direction computed at time 
i + 1. Note that the updating algorithm is also a recursive 
process from time i to i + 1, where Eq. (23) is repeatedly 
computed to update contact element force vector along with 
other element force vectors at time i + 1 until convergence 
criteria are satisfied.

Tangential stiffness matrixes for normal and tangential 
contact—The developed finite element program employs 
Newton-Raphson method to solve the nonlinear equations, 
which requires linearization of the governing equation. In 
this study, the tangential stiffness matrix of contact element 
is numerically evaluated by the complex variable differenti-
ation method (Squire and Trapp 1998). This method is not 
subject to subtraction error, from which conventional finite 
difference method usually suffers.

Anchorage element
Jacking procedures—The anchorage element is developed 

to serve as an interface element between a tendon element 
and an embedding element. This element is only activated 
after the completion of tendon jacking and the subsequent 
anchorage wedge setting. The anchorage element behaves as 
a very rigid spring between the anchor point and the ends of 
tendon, as shown in Fig. 4.

The translational motions of Node 1 and Node 2 are 
constrained to be equal by penalty method. The penalty 
factor needs to be sufficiently large to eliminate any relative 
motion between the end of tendon and the corresponding 
anchor point. A typical finite element simulation is divided 
into four steps as follows: 1) stretching tendon (friction 
loss along stretching path of tendon profile); 2) anchorage 
wedge setting (reversed friction loss); 3) anchoring tendon; 
and 4) service loading. At Steps 1 and 2, the two degrees of 
freedom of tendon node (for example, Node 1 in Fig. 4) are 
set to essential boundary conditions, and the corresponding 
prescribed displacements and loads are, respectively, applied 
to emulate the motions of tendon jacking and succes-
sive anchorage slip. At each iteration process, the reaction 
forces are computed at the end node of the tendon and are 
transmitted to the embedding element node connecting to 
the tendon (for example, Node 2). This treatment ensures 

that the approximated reactions due to jacking at the end 
are transmitted to the PT beam. The schematic view of this 
process is shown in Fig. 5.

Once equilibrium is reached at the end of Step 2, the 
distance between the end node of the tendon and the node of 
the corresponding embedding element supposes to be minis-
cule. The distance is minimized by computing the desired 
tendon jacking length and anchorage slip in advance. The 
precomputed displacements are used to determine the initial 
position of the end node of the tendon. However, at the end 
of Step 2, a tiny distance may still exist between the end 
node of the tendon and the corresponding anchor point due 
to the difficulty of accurately determining the initial posi-
tion. The distance between Node 1 and Node 2 at the end  
of Step  2 is accordingly defined as the initial length of 
anchorage element (Fig. 4). The components of this length in 
x- and y-axes of global coordinates are, respectively, depicted 
as step

x
e step

x
ed d2

1

2

2−  and step
y
e step

y
ed d2

1

2

2−  in Fig. 4, where  
step2dac

e is the displacement of anchorage element at the end 
of Step 2. At the beginning of Step 3, anchorage element is 
activated between the prestressing tendon and corresponding 
embedding element. In the case of one end jacking, only one 
anchorage element is activated. Otherwise, two anchorage 
elements are activated simultaneously for two-end jacking. 
In addition, the essential boundary condition at the end node 
of tendon and the corresponding reaction forces at anchor 
point are removed at the beginning of Step 3. Because the 
stiffness of added anchorage elements is sufficiently large 
(at least one order of magnitude larger than the typical stiff-
ness in the system), the relative motions are negligible once 
the equilibrium is reached at the end of Step 3. After Step 2, 
the incremental displacements at Node  1 is denoted as u. 
Therefore, the displacement of Node 1 comprises two parts: 

Fig. 4—Formulation of anchorage element.

Fig. 5—Tendon jacking reactions transferred to PT member.
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1) initial displacement obtained at the end of Step 2; and 2) 
the sequential increment after Step 2.

The anchorage element consists of two nodes. The first 
node is the end node of the tendon and the second node is 
part of the embedding element at member ends. The displace-
ment vector (dac

e) of an anchorage element is written as

	 d d d d d d dac
e

x
e

y
e e

x
e

y
e e= [ ]1 1 1 2 2 2θ θ

T	 (24)

where e denotes the element label. The relative motion 
between the end node of the tendon and the corresponding 
node of the embedding element is denoted in global Carte-
sian coordinates as

	 u u uac
e

x
e

y
e= [ ]	 (25)

At the end of Step 2, the displacement vector of the 
anchorage element is defined as

	 step
ac
e step

x
e

y
e e

x
e

y
e ed d d d d d d2 2

1 1 1 2 2 2= [ ]θ θ
T	 (26)

According to the definition, uac
e is recast as

	 u d d Nac
e

ac
e step

ac
e

ac= −( )2 T 	 (27)

	 Nac =
−

−










1
T

0 0 1 0 0

0 1 0 0 1 0
	 (28)

If the penalty form is employed, the virtual work of an 
anchorage element e is written as

	 δ∏ = εacuac
eNac

Tδdac
e	 (29)

where εac is the penalty factor of anchorage element. The 
element force vector is obtained as

	 Gac
e = (εacuac

eNac
T)T	 (30)

Substituting Eq. (27) into Eq. (30) yields

	 G d d N Nac
e

ac ac
e step

ac
e

ac ac= − ε ( )2 T T
T

	 (31)

Because the anchorage element has an initial displace-
ment field and behaves nonlinearly, linearization of Eq. (29) 
leads to the tangential stiffness matrix (kac

e)

	 kac
e = εacNacNac

T	 (32)

Other element techniques
A brief summary of other element techniques is given 

in Appendix B. The engineering elements presented in 
Appendix B are based on the conventional small deformation 
formulation taking into account the material nonlinearity. A 
more detailed description is given by Huang (2012).

Solution schemes and implementations
The global tangential stiffness matrix is assembled from 

the abovementioned five elements as

	 K = Kct + Kac + Kbeam + Kemb + Ktruss	 (37)

where Kct, Kac, Kbeam, Kemb, and Ktruss are assembled from 
element tangential stiffness matrixes kct

e, kac
e, kbeam

e, kemb
e, 

and ktruss
e for contact, anchorage, beam, embedding, and 

truss elements, respectively.
The Newton-Raphson scheme with line search modifica-

tion was adopted and implemented to solve the nonlinear 
equations. The partition method was selected to properly 
impose boundary conditions. The convergence criteria 
are associated with the l2 norm of displacement increment 
vector and residual force vector. A nonlinear finite element 
code was developed in MATLAB (2010) to implement the 
proposed formulations. The developed code is available in 
the first author’s PhD dissertation (Huang 2012).

NUMERICAL STUDIES
Analytical solution of curvature-induced prestress 
loss

The Post-Tensioning Institute (PTI 2006) and ACI 
Committee 423 (2016) suggest an analytical formula to 
compute curvature-induced prestress loss as shown in Eq. (38)

	 Tx = T0e–(μα+kx)	 (38)

where Tx is the post-tensioning force at a distance x along the 
tendon profile from the jacking end; T0 is the post-tensioning 
force at the jacking end; μ is the curvature coefficient which is 
in the range of 0.05 to 0.3, depending on sheathing material; α 
is the total angular change in radian at a distance x from the 
jacking end; and k is the wobble coefficient per foot of tendon 
that has a range of 0.0001 to 0.0015, depending on sheathing 
material. This formula was used to compute the analytical solu-
tions with and without wobble effect. The results are compared 
with numerical solutions in the following examples.

Prestress loss without wobble effect
An imaginary PT beam is studied in this analysis (Fig. 6). 

The imaginary PT beam is simply supported at a span 
of 15.2  m (49 ft 10 in.). The rectangular beam section is 
254 mm (10 in.) wide and 1016 mm (3 ft 6 in.) deep. It is only  
reinforced by a single Grade 270 seven-wire strand with an 
area of 987 mm2 (1.53 in.2). The tendon profile is draped with 
zero eccentricity at both ends and with 279 mm (11 in.) eccen-
tricity at midspan. The tendon is unbonded and post-tensioned 
to an effective prestress of 1407 MPa (204 ksi) (considering 
friction). Concrete compressive and tensile strengths are, 
respectively, 27.6 MPa (4 ksi) and 3.3 MPa (480 psi).

The baseline finite element model is discretized by 20 
beam elements, 21 embedding elements, 21 truss elements, 
20  contact elements, and an anchorage element. Another 
two models were also constructed with 40 and 60  beam 
elements to study mesh sensitivity (other elements were also 
proportionally refined). The wedge setting was selected to be 
0.5 mm (0.02 in.) in this case to clearly render the reversal 
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of tendon friction within the span (typical wedge setting loss 
is much larger). The frictional coefficient μ is assumed to be 
0.3 for the analytical and numerical models, which yields 
a partially bonded interface in the simulation. The wobble 
effect was neglected (k = 0) in the first numerical study.

The frictional loss obtained from the finite element analysis 
(FEA) is 68.4 MPa (9.9 ksi) at the non-jacking (fixed) end. 
The analytical prestress loss along the beam is also plotted in 
Fig. 7. The reverse movement of tendon due to wedge setting 
leads to prestress loss at the jacking end. The prestress loss 
starts from the jacking end and is reversed at the balance 
point (that is, where the reversal of tendon friction occurs). 
Beyond that point, prestress loss due to wedge setting loss is 
not present. The model performed quite well to simulate the 
trend of prestress loss as well as to capture the prestress distri-
bution pattern. Negligible difference exists among solutions 
with different mesh sizes, which implies that a converged 
solution is rendered with a relatively coarse mesh (Fig. C1 of 
Appendix C). The computed prestress losses along with FEA 
predictions are summarized in Table 1.

Prestress loss with wobble effect
The prestress losses caused by the profile curvature and 

wobble effect are the curvature-induced friction. The curva-
ture of tendon comprises the intended part (tendon profile) 

and the unintended part (tendon wobble). The wobble effect 
is usually assumed to be uniformly distributed along the 
tendon length direction and its magnitude is characterized 
by an empirical wobble coefficient k. In this example, the 
assumed k (for analytical solution) is converted into addi-
tional equivalent tendon curvatures by introducing a sinu-
soidal waveform superposed on the existing tendon profile. 
The period and magnitude of the sinusoidal function was 
adjusted such that the total angular change along the profile 
length equals (μα + kx)/μ, where μ and k are used to compute 
analytical solution. On the other hand, the FEA uses the same 
frictional coefficient μ. This physical treatment ensures the 
solutions obtained from FEA are comparable to the analyt-
ical solutions. The idealized tendon profile and the adjusted 
tendon profile for the following studies are shown in Fig. 8 
for comparison.

Two continuous two-span PT beams tested by Burns et al. 
(1991) were selected to evaluate the proposed formulation 
with wobble effect and to investigate prestress redistribution. 
Both specimens are continuous over two equal spans at 
7.6  m (25 ft). The specimens are pin-supported at middle 
and roller-supported at both ends. The rectangular sections of 
both specimens share the same 305 mm (1 ft) width, and are 
355 mm (1 ft 2 in.) and 560 mm (1 ft 10 in.) deep, respectively. 
Both specimens were post-tensioned at one end (south end) 

Fig. 6—Details of imaginary simply supported PT beam. (Note: 1 MPa = 0.145 ksi; 1 mm = 0.0394 in.; 1 m = 39 in.; 1 mm2 = 
0.00155 in.2.)

Fig. 7—Comparison of prestress losses before and after wedge setting between FEA and analytical solutions with μ = 0.3 and 
k = 0.
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to an effective stress of 1396 MPa (202 ksi) (approximately 
0.75fpu, where fpu is the ultimate strength of prestressing 
tendons) with three unbonded tendons of 12.7 mm (0.5 in.) 
in diameter. Additional reinforcements were also provided 
at both top and bottom of the section to comply with ACI 
minimum reinforcing requirement. Additional details of the 
experimental program are referred to in Burns et al. (1991).

The finite element models for both specimens are 
composed of 59 beam elements, 58 embedding elements, 
58 truss elements, 59 contact elements, and an anchorage 
element. The frictional and wobble coefficients were set to 
0.07 and 0.001, as suggested by Burns et al. (1991) so as the 
wedge setting length. Figures 9 and 10 compare the numer-
ical prestress losses with the analytical solutions calculated 
by Burns et al. (1991) before and after loss of wedge setting. 
Good agreements are achieved between the numerical solu-
tion and the analytical solution, as indicated in Table 1.

The cyclic loading was not simulated because the modeling 
of advanced material constitutive law is beyond the scope of 
this study. Instead, two simulations (μ = 0.07 and k = 0.001 
versus μ = 0 and k = 0) with monotonic loading were carried 
out to investigate the difference of prestress redistribution 

under frictional and frictionless contact for the second spec-
imen. The specimen was point-loaded at the middle of the 
north span to a deflection of 76 mm (3 in.). While the differ-
ence of prestress redistributions is obvious at ultimate state, 
as shown in Fig. 11 (deflection at middle of north span = 
76 mm [3 in.]), the global flexural behaviors are almost iden-
tical through the entire loading path (Fig. 12). It is of interest 
to note that the curvature-induced frictional effect has little 
impact on the flexural behavior of the specimen on a global 
scale. One possible explanation of the aforementioned obser-
vation is that the bonding condition of prestressed tendon has 
little effect on the reduced section stiffness (effective section 
stiffness) due to crack. Therefore, two numerical simulations 
exhibited almost identical patterns of stiffness reduction as 
load was gradually increased. This is also evident as both 
specimens developed similar cracking patterns after rein-
forcing bar yielding in the simulations (crack is determined 
by computing strain at each layer of a section and then is 
compared to the cracking strain defined by the concrete 
strain-stress curve; cracked regions are plotted in blue in 
Fig.  13). Another reason is that the stiffness contributions 

Table 1—Comparison of prestress losses

Prestress loss*

jacking end (analytical)
Prestress loss*

jacking end (FEA) FEA/analytical
Prestress loss*

fixed end (analytical)
Prestress loss*

fixed end (FEA) FEA/analytical

Imaginary beam
Wedge set = 0.5 mm 3.5% 3.2% 0.92 4.2% 4.9% 1.16

Specimen 1
Wedge set = 1.27 mm

(Burns et al. 1991)
5.5% 5.6% 1.02 8.2% 8.2% 1.00

Specimen 2
Wedge set = 1.27 mm

(Burns et al. 1991)
6.3% 7.1% 1.13 11.5% 11.1% 0.96

Specimen 1
Wedge set = 3.18 mm

(Burns et al. 1991)
9.5% 9.6% 1.01 8.2% 8.3% 1.01

Specimen 2
Wedge set = 3.18 mm

(Burns et al. 1991)
10.5% 11.3% 1.08 11.5% 11.1% 0.96

*Prestress loss is computed as ratio of current prestress to effective measured prestress at jacking end.

Note: 1 mm = 0.0394 in.

Fig. 8—Comparison of ideal tendon profile to adjusted tendon profile with k = 0.001.
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from the prestressed tendons and nonprestressed bars are 
also similar in either frictionless or frictional contact cases.

Validation using experimental data of PT beams
Five PT beam specimens (A-1, A-2, A-3, A-6, and A-9) 

tested by Tao and Du (1985) were selected for further 

Fig. 9—Comparison of prestress losses between FEA and analytical solutions of Specimen 1. (Note that analytical solutions are 
reproduced from Burns et al. [1991].)

Fig. 10—Comparison of prestress losses between FEA and analytical solution of Specimen 2. (Note that analytical solutions 
are reproduced from Burns et al. [1991].)

Fig. 11—Comparison of prestress redistribution at ultimate state between frictional and frictionless FEA.
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validation. The simply supported PT beams had identical 
geometries, but were reinforced with different amounts of 
prestressing tendons and nonprestressed mild steel bars. The 
sections of rectangular beam were 160 mm (6.3 in.) wide 
and 279 mm (11 in.) deep. The test specimens with a clear 
span of 4.2 m (13 ft 9 in.) were subjected to a two-point 
monotonic loading. The loading points were 1.4 m (4 ft 
7  in.) away from each support. The unbonded PT tendons 
had a straight profile with an effective depth of 220 mm 
(8.7 in.). The nonprestressed reinforcement layer was only 
provided at the bottom of the sections with an effective 
depth of 250 mm (9.8 in.). The detailed description about 
the test program is referred to in Tao and Du (1985).

The finite element model contains 21 beam elements, 22 
embedding elements, 22 truss elements, 21 contact elements, 
and an anchorage element. The frictional coefficient (μ) 
is assumed to be 0.3 for the prestressing tendons, which 
yields a partially bonded interface. The wobble effects were 
neglected in the simulations. On the other hand, a series of 
simulations without considering the frictional effects (fric-
tional coefficient μ is zero) were also conducted to iden-
tify the influence of the bonding condition on the flexural 
behavior at a global scale.

Figure 14 (and Fig. C2 of Appendix C) shows the compar-
isons of the global responses between numerical simulations 
and the experiments. The simulation results have reasonably 
good agreements with corresponding experimental data. 
The cracking and yielding stages of the responses were 

well captured by the proposed formulation, especially for 
under-reinforced beams (refer to Fig. 14). As the reinforce-
ment ratio increases, the simulations tend to predict softer 
responses. This phenomenon was probably caused by the 
same concrete post-cracking strain-stress relation that was 
adopted in all the simulations. Tension stiffening effect 
was reportedly to be a function of the reinforcement ratio 
(Gilbert 2007). The simulation results can be potentially 
improved by adopting an advanced tension stiffening model 
to adjust the strain-stress relation of the RC beam elements 
at post-cracking stages. Simulations with frictional contact 
are plotted with cross marks as opposed to frictionless simu-
lations plotted with dotted marks. Again, negligible differ-
ences of the global responses were found between the fric-
tional and frictionless contact, which implies the assumption 
of perfectly unbonded condition is appropriate for modeling 
small-scale or single-span PT beams with respect to predic-
tions of global flexural responses. However, the solution 
of stress at local segments of tendons is largely influenced 
by this simplification, as shown in the previous numerical 
example (Fig. 11).

Validation using experimental data of PT one-way 
slabs

Cooke et al. (1981) conducted an experimental investiga-
tion of 12 simply supported one-way PT slabs under two-point 
loading. Two of them (Slab 4 and Slab 5) with unbonded 
tendons were modeled. Slab 4 and Slab 5 are 3.6 m (11 ft 10 in.) 
long and are, respectively, 353 mm (1 ft 2 in.) and 705 mm (2 ft 
4 in.) wide, with a clear span of 3.4 m (11 ft 7 in.). The thick-
nesses of both slabs are 180 mm (7 in.). Three straight tendons 
12.7 mm (0.5 in.) in diameter were post-tensioned at a constant 
eccentricity of 120 mm (4.75 in.). Bonded reinforcement was 
not present in both slabs. More details are in Cooke et al. (1981)

The finite element models for both slabs are composed of the 
same number of elements and nodes as in the previous numer-
ical study. Only the perfectly unbonded condition (frictional 
coefficient μ is zero) was investigated. The results of simu-
lations were also compared with an early effort of modeling 
unbonded tendons made by the authors using a general- 
purpose finite element analysis package, where the same 
perfectly unbonded condition was asssumed (Kang et al. 2015).

The global responses are plotted in Fig. 15 (and Fig. C3 
of Appendix C). The current finite element formulation Fig. 12—Comparison of load-deflection curve between FEA 

and experiment.

Fig. 13—Comparison of crack patterns between frictional and frictionless FEA. (Note: Specimen depth-to-span ratio is not to 
scale.)
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predicted an accurate flexural response of Slab 4 compared 
with the experimental result. The simulation of Slab 5 
slightly overestimated the yielding strength, as did the 
previous modeling attempt (Kang et al. 2015). The model, 
however, accurately captured the trend of bilinear response. 
The oscillation observed in the previous study was caused 
by the selected dynamic analysis routine with a combination 
of dynamic transient response and occurrence of cracking.

SUMMARY AND CONCLUSIONS
An innovative approach to model bonded, 

partially  bonded, and unbonded PT concrete members was 
developed. The discussion of this study focuses on incorpo-
rating a simple contact formulation into conventional engi-
neering elements. The interface of prestressing tendons and 
corresponding sheathings was modeled through the modi-
fied node-to-segment contact formulation. Several types of 
elements are discussed in depth and developed to emulate 
behaviors of PT beams. The proposed finite element formu-
lation was implemented into a nonlinear finite element code 
developed by the authors in MATLAB. Several numerical 
studies were carried out to validate the reliability of the 
modeling. Numerical studies showed its reliability through 
not only good reproduction of global structural responses, 
but prestress loss and redistribution at local scale. Further-
more, by using the proposed numerical routines, a design 
solution can be reached with dispatch, whereas general- 

purpose nonlinear FEA codes tend to fall short in terms of 
simplified modeling and design efficiency.

The proposed framework is generic enough to be extended 
to other studies in the future. For example, the bond stress 
at tendon-sheathing interface can be further investigated by 
implementing advanced constitutive models at the contact 
interface. Additionally, it can be used to analyze other types 
of PT members such as transfer girders and structural walls 
besides PT beams and one-way slabs by introducing other 
types of structural elements.

The other aims of the study included reproducing both 
global flexural behavior and localized prestress loss/redis-
tribution of unbonded and partially bonded PT members, 
which allowed for assessment of the effect of local behavior 
on the global behavior.
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